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1. Comments on the derivation of Eq. (2.20) in [Sugiyama, 2000] (SP)

Consider the momentum and gyroviscous terms in Eq. (2.2) of SP
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Substitute from (2.14) and (2.17) of SP
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Thus, EQ. (1) becomes
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Now, from equations (26) and (35) in [Belova, 2001], we have the relation:
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where we use the following definitions [Belova, 2001]:
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Thus, if V. =V, cancellations will occur in the inertial terms and we will get Equation

(2.20) of SP (but with a different form farg and forx). However, in generaly. # \7di

as you can see from taking the cross product of Equation (2.2) in SP with the magnetic
field:
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where the generalized polarization drift term is
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Thus, it is clear that Eq. (2.20) is not consistent with Eq. (2.2) in SP unless some
additional approximations (involving the polarization drift term) are made. However, the

second term in Eq. (5), involving the polarization drift, is of higher ordecb"rn%.

This is true both in the drift ordering, wher\é— ~ 0, %~ w~ 0°Q_ , and in the
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Gyrokinetic ordering whereVL ~0, %~ w~0Q,. Thusto lowest order in the small
th

parameted , Equations (2.20) and (2.2) in SP are consistent.

2. Alternative form keeping the effects of the polarization drift

Combine Eq. (1) and (3) to get for the inertial and gyroviscous terms in the ion
momentum equation:
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And we have for the final form of the FLR corrected momentum equation:
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In terms of the velocity defined in EqQ. (7), the electron velocity becomes:
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Now, consider the Ohm’s law, Eg. (2.3) in SP:
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Substitute (9) into (10) to get:
TV U Ry S 0.71D =
E+VxB=nJ+—(Jx B-0Op-0 -—— - B
n ne( R~ Ug P) e kI- N
(11)
Thus, Equations (2.20) and (2.22) in SP could be replaced with those from Equations (8)
and (11) to retain the polarization term, and hence include the Hall term in Ohm’s law.
3. Alternative form using the ion velocity:
Note further that [Belova,2001] has an identity in Eq. (39) and (40) , valid in the

Gyrokinetic ordering, that can be used to write the ion inertial terms in another form. i.e.,
the identity:
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allows one to rewrite the FLR corrected momentum equation as:
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where [Belova, 2001]
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If this form were used, the most natural form for the Ohm'’s law equation would be:
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4. Relation to [Hazeltine, 1992] (HM)

We can make contact with the notation of [Hazeltine,1992] by making the variable
transformation
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or, in HM notation, similar to their Equation (138):
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Similarly, in their notation, the Ohm’s law, Eq (14) becomes:
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Thus, our equations (17) and (18) correspond to HM Equations (137) and (138) . The
additional terms in the momentum equation due to the gyroviscous stress are consistently
dropped in HM where it is argued that since these terms are basically the perpendicular
gradient of something, they are equivalent to the perpendicular pressure being slightly
different and will not affect things in a fundamental way. The additional terms in the

Ohm'’s law equation are associated with parallel electron temperature gradients and
neoclassical effects.

5. Alternate formulation in terms of canonical momentum and
generalized vorticity:

Consider now the FLR corrected momentum equations (8) and the generalized Ohm’s

law equation (11). The two term$x B— [P in Equation (11) almost cancel one

another, and the first term leads to the whistler dynamics and the associated numerical
problems. Equation (8) can be used to eliminate this term, to yield for the magnetic field
evolution euation(without further @proximation:
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where B" = 0x (A+ LV is the generalized vorticity, the curl of the canonical
e

momentum [Steinhauer,1998]. Sine= B - L0xVand J = 0x B, the FLR
e
corrected momentum equation (8) can be written in termB'afs:
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6.0 Dispersion Relation

(20)
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Expanding around a homogeneous force-free equilibrium WikB = 0P =V =0, we
can obtain the 2-fluid zero-pressure dispersion relation from either (8), (11) or (19), (20).
Letting the background magnetic field and wave number have the forms (in Cartesian

coordinates)B, = (0,0,B), k= (k ,0,k ), we obtain:
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whereV;? = B’/nm, Q%= & B/ m The two roots fore?/V?, corresponding to the
Hall modified fast wave (+) and shear Alfven wave (-) are given by:
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The rootgs’/V? are plotted in Figure 1 for values of the Hall parame¢@fQ® =0 and
V,/Q =0.2 Note from the figure that when the Hall parameter vanishes, the two roots

have their familiar form\c'/')2 = (k? +k®) (fast wave) ancf‘—)2 k> (Alfven wave).
A



Further, when the Hal parameters non-zero, athe wave nurberislarge so hat
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Figure la: Fast wave dispersion relation with no Hall term



of/ V2 for Alfiven Wave with (V,*/Q?=0)
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Figure 1b: Alfven wave dispersion relation with no Hall term

Figure 1c:

of/ V2 for Hall modified Fast Wave with (V,%/Q?=0.04)
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Fast wave dispersion relation with Hall term
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o/ V,* for Hall modified Alfven Wave with (V,*/Q*=,04)
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Figure 1d: Alfven wave dispersion relation with Hall term
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